SAT MATH SECTION: CHEAT SHEET FORMULAS, RULES, AND DEFINITIONS

Note: important formulas included at beginning of every test not included below

ALGEBRA:

ZERO PRODUCT PROPERTY: If ab = 0, then a = 0, b = 0, or a = b = 0.

ONE, ZERO, or INFINITE SOLUTIONS

SINGLE VARIABLE EQUATIONS:

If a single variable equation has ONE, ZERO or INFINITE solutions:

One solution	Zero solutions	Infinite solutions
You'll get a single x (or	For a single variable equation	For a single variable equation
whatever variable is in the	to have no solution, all of the	to have infinite solutions, all
equation) value, (i.e. x=5 or	elements in the equation	of the elements in the
y=2)	with the variable must cancel	equation with the variable
	out, (i.e. if 2x is on one side	must cancel out, (i.e. if 2x is
	of an equation and ax is on	on one side of an equation
	the other, a=2), and any	and ax is on the other, a=2),
	remaining constants must	and any remaining constants
	create a statement that isn't	must create a statement that
	true. If you simplify and get a	is ALWAYS true, for example,
	statement that is never true	if 3x+4k=ax+12, with variable
	(i.e. 5=9 or 0=4), you have no	x and constants k and a, has
	solutions.	infinite solutions, a must
		equal 3 and 4k must =12. If
		you simplify and get two
		values that always equal each
		other (i.e. 3x=3x or 5=5), you
		have infinite solutions.

SYSTEMS OF EQUATIONS: To determine if a system has ONE, ZERO or INFINITE solutions you have three methods:

1. Solve the system using elimination or substitution

When you solve down a system of equations, one of three outcomes is possible as you run the algebra and create a final, simplified equation:

One solution	Zero solutions	Infinite solutions
If you get a single x or y	If you get a statement that is	If you get two values that
value, (i.e. x=5 or y=2) you	never true (i.e. 5=9 or 0=4),	always equal each other (i.e.
have one solution.	you have no solutions.	

3x=3x or 5=5), you have infinite solutions.

2. **Comparing equations:** You can alternatively put EVERY equation in slope intercept form that is part of your system of linear equations. Then look at each of the y=mx+b forms and compare the two slopes (i.e. the "m's") and y-intercepts (the "b's").

One solution	Zero solutions	Infinite solutions
Different slopes (intercepts	Same slopes (parallel lines),	Same slope, same intercept
don't matter)	different y-intercepts	i.e. identical equations
On a graph this is two lines	On a graph this is two parallel	On a graph, this is the same
intersecting at a single point.	lines.	line (i.e. both equations you
		have are actually identical
		but not "simplified" the
		same).

3. Graphing in Desmos: Put every equation in Desmos. See chart above.

SOLVING SYSTEMS OF EQUATIONS:

TIP: Look for shortcuts / use elimination on systems of equations questions to get what the question asks for rather than solve down for each individual variable. I.e. if the question asks for x+y, try to use elimination/adding or subtracting the whole equations to end up with x+y straightaway.

FOIL AND FACTORING:

- A monomial is a single product such as $4x, 7x^3$, or $8n^2$.
- A binomial has two elements added together such as 4x + 3 or $5n^3 + 3n$.
- A **polynomial** has multiple elements added together such as $5n^3 + 3n^2 + 7n + 2$ or $5x^2 + 2x + 4$.
- Difference of Squares: The product of the difference (a-b) and the sum (a+b) is equal to *a* squared minus *b* squared, $(a-b)(a+b) = a^2 b^2$
- Square of a Sum: $(a + b)^2 = a^2 + 2ab + b^2$
- Square of a Difference: $(a b)^2 = a^2 2ab + b^2$

SLOPE FORMULA: For points (x_1, y_1) and (x_2, y_2) , $m = \frac{y_2 - y_1}{x_2 - x_1}$.

STANDARD FORM SLOPE SHORTCUT: If Ax + By = C, slope is equal to $-\frac{A}{R}$

SLOPE-INTERCEPT FORM: y = mx + b

Where m is the **slope** of the line, and b is the **y-intercept** of the line at point (0, b).

MIDPOINT FORMULA: The midpoint of two coordinate points (x_1, y_1) and (x_2, y_2) is:

$$\left(\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2}\right)$$

DISTANCE FORMULA: Given two points, (x_1, y_1) and (x_2, y_2) , the distance between them is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

SPEED AND RATES DISTANCE FORMULA: d = rtWORK FORMULA: w = rtCOMBINED WORK FORMULA: $w = (r_1 + r_2)t$

QUADRATICS AND POLYNOMIALS: Important- know how to find the vertex of ANY parabola!

- VERTEX FORM OF A QUADRATIC: the vertex form of a parabola is: $f(x) = a(x-b)^2 + k$
 - The vertex of the parabola in this form is (h, k)
 - When a is positive, the parabola opens upwards, and the minimum is (h, k).
 - When a is negative, the parabola opens downwards, and the minimum is (h, k).
 - Alternate form for parabolas with horizontal axis (RARE, unlikely to appear) $x = a(y-k)^2 + h$, positive *a* opens right-ward, negative *a* opens leftward
- FACTORED FORM: The factored form of a polynomial usually takes the form:

$$f(x) = a(x-n)(x-m)$$

- When a is positive, the parabola opens upwards.
- \circ When *a* is negative, the parabola opens downwards.
- The graph crosses the x-axis at each point when a factored piece equals zero (the zeros). For example, at x=n, x-n equals 0, so the graph crosses through the point (n, 0) on the x-axis.

In the case of a quadratic, which will typically have two roots (i.e. two factored pieces that include an x), the midpoint of 2 zeros is the x-value of the vertex. In the example above, the zeros are at x=n and x=m. So the x value of its vertex is the average of n and m.

- STANDARD FORM: the standard form of the parabola has the general form: $f(x) = ax^2 + bx + c$
 - $-\frac{b}{2a}$ is the x-value of the vertex. The y-value of the vertex can be found by

plugging in this value for x and solving for y (or f(x)). Memorize this!

- Assuming a vertically oriented parabola, the vertex is always either the maximum or the minimum of the graph. (remember max/min is always the yvalue!)
- \circ When *a* is positive, the parabola opens upwards.
- \circ When *a* is negative, the parabola opens downwards.
- The sum of the two roots is $-\frac{b}{a}$ (memorize if aiming for 750+)
- The product of the two roots is $\frac{c}{a}$ (memorize if aiming for 750+)
- QUADRATIC FORMULA: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ Memorize this. Also, we recommend you

program it into your calculator. (See TI 84 programs for download in the online course or google our YouTube video on downloading programs TI 84)

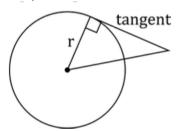
- FINDING SOLUTIONS USING THE DISCRIMINANT: Given that $f(x) = ax^2 + bx + c$, the discriminant is defined as $b^2 4ac$ (the piece under the radical in the quadratic equation):
 - When this value is positive, there are two real roots
 - When this value is 0, there is one real root
 - When this value is negative, there are no real roots but two imaginary roots

RADICAL AND EXPONENT RULES:

EXPONENT RULES	RADICAL RULES
Zero Power Rule: $a^0 = 1$	Fractional exponent conversion: $\sqrt[c]{a^b = a^{\frac{b}{c}}}$
Negative exponent rule: $a^{-b} = \frac{1}{a^b}$	Product of radicals: $\sqrt[4]{a}\sqrt[4]{b} = \sqrt[4]{ab}$
Power of a power: $(a^b)^c = a^{bc}$	
Product of powers: $(a^b)(a^c) = a^{c+b}$	
Power of a product: $(ab)^c = a^c b^c$	
Power of a quotient: $\frac{a^b}{c^b} = \left(\frac{a}{c}\right)^b$	
Quotient of powers: $\frac{a^b}{a^c} = a^{b-c}$	

CIRCLE THEOREMS:

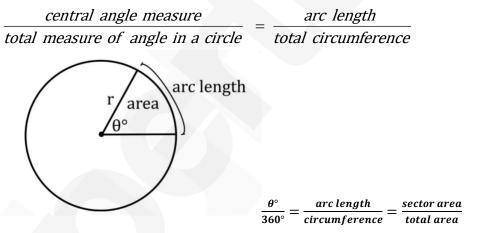
- **Circle Equation**: $(x-b)^2 + (y-k)^2 = r^2$ with center point at (h, k)
- A **tangent line** to a circle forms a 90° angle with the radius that touches the tangent point



When you see the word TANGENT in a problem involving a circle:

- **Draw a radius** from the center to the tangent point(s).
- Mark the angle formed by a radius and tangent line as 90 degrees.
- Look for right triangles or draw any necessary additional lines to create them.
- Use the Pythagorean Theorem, SOH CAH TOA, or other rules you know as appropriate to solve.

Angle to Arc Length Equations: Central angles are proportional to the arc length they intercept, so you can create a proportion that equates part over whole equal to part over whole:



DEGREES VERSION OF EQUATION:

More specifically, this means if a circle has a central angle a, radius r, and arc length L:

$$\frac{a^{\circ}}{360^{\circ}} = \frac{L}{2\pi r}$$

RADIANS VERSION OF EQUATION:

• For any arc on a circle with a central angle (in radians) of *θ*, where *r* is the radius of the circle, the length *L* of the arc is given by:

 $\frac{\theta}{2\pi} = \frac{L}{2\pi r}$ which simplifies to a short handy equation that's a good idea to memorize: $L = \theta r$.

Angle to Sector Area Equations: Central angles are proportional to the area of the sector they include, so you can create a proportion that equates part over whole equal to part over whole:

sector anglesector areatotal angle measure of a circletotal area of circle

DEGREES VERSION OF EQUATION:

• For any sector on a circle with a central angle (in degrees) of *a*, where *r* is the radius of the circle, and the area is *A*:

$$\frac{a^{\circ}}{360^{\circ}} = \left(\frac{A}{\pi r^2}\right).$$

RADIANS VERSION OF EQUATION:

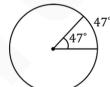
• For any sector in a circle with a central angle (in radians) of *θ*, where *r* is the radius of the circle, and the area *A* of that circle:

$$\frac{\theta}{2\pi} = \frac{A}{\pi r^2}$$

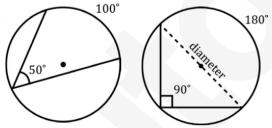
This simplifies to a shorter equation, which may merit memorizing:

$$A = \frac{1}{2}\theta r^2$$

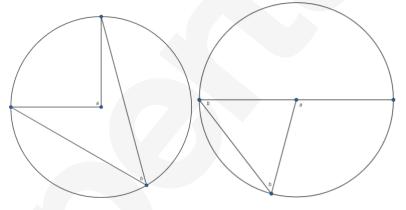
Central angles (angles formed by two radii that touch the circle in two places) in a circle are always the same degree measure as their corresponding arcs. For example, in the following picture, the arc is **47°** and so is the central angle:



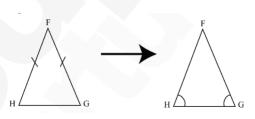
Inscribed angles (formed by two chords) are **half the corresponding arc measure**. For example, a 50 degree angle always opens to a 100 degree arc. A 90 degree angle always opens to a 180 degree arc. In fact, this is the example I use to remember this rule if I forget it, because it's so common to see in problems.



• Inscribed Angle Theorem: States that an angle (portrayed as *b* below) inscribed in a circle is equal to half of the central angle (portrayed as *a* below) that subtends the same arc. Both scenarios below show the central angle theorem:



Isosceles Triangle: If two sides of a triangle are equal, their opposite angles are congruent.



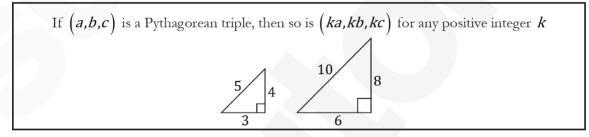
PYTHAGOREAN TRIPLES

A Pythagorean triple consists of three positive integers a, b, and c such that $a^2 + b^2 = c^2$. Such a triple is commonly written (a,b,c). Some well-known examples are:

(3,4,5),(5,12,13),(8,15,17), & (7,24,25).

TIMING TIP: MEMORIZE THESE! Knowing these will vastly speed up your math performance!

MULTIPLES OF PYTHAGOREAN TRIPLES



Trigonometry:

SOHCAHTOA: For any angle θ in a right triangle, $\sin \theta = \frac{opposite}{hypotenuse}$, $\cos \theta = \frac{adjacient}{hypotenuse}$ and $\tan \theta = \frac{opposite}{hypotenuse}$.

Advanced Math:

- Function Notation: (many of these are unlikely to appear, but you should understand how function notation works)
- $(f \circ g)(x)$ means f(g(x))
- $(f * g)(x), (f \cdot g)(x), f(x) \cdot g(x)$, and fg(x) mean multiply f(x) and g(x)
- $\left(\frac{f}{g}\right)(x)$ means $\frac{f(x)}{g(x)}$

Problem Solving and Data Analysis:

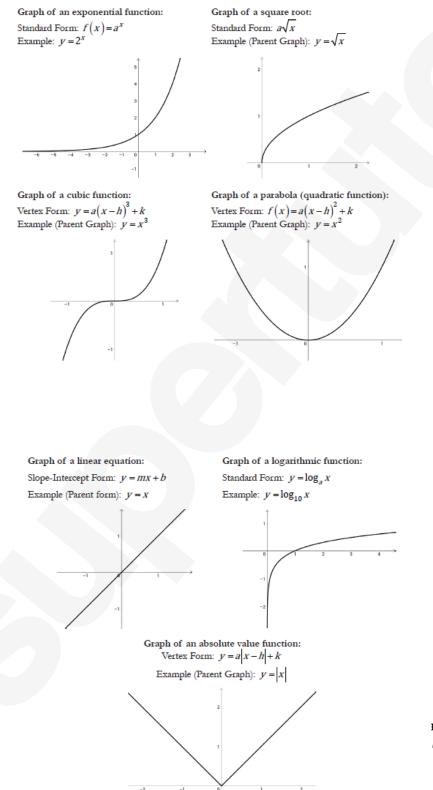
General Statistics:

- Average or Mean: Sum of terms divided by number of terms
- Median: The numerical middle value of a set of terms when terms are arranged in order
- Mode: The most common term in a set of terms (there can be more than one)
- Range: The largest value in a set minus the smallest value in the set

Graphs/Plots:

• Line of Best Fit: A line that best represents the data on a scatterplot. It can be used to estimate the value of points not on the plot itself. TIP: pluck points and use a calculator program to find y=mx+b on scatterplots OR use the TABLE function in Desmos and linear regression.

GRAPH BEHAVIOR: Types of graphs:



al @ supertutortv.com! ute without permission. 9

- Horizontal Shift: For ALL functions, if you replace all instances of x in a function with "(x-b)" you'll find that the graph moves "h" units to the right.
- Vertical Shift: If you replace all instances of y in a function with "(y-k)" you'll find that the graph moves "k" units upward.

END BEHAVIOR:

Degree: Even	Degree: Even
Leading Coefficient: positive	Leading Coefficient: negative
End Behavior: $f(x)$ approaches $+\infty$ at both	End Behavior: $f(x)$ approaches $-\infty$ at both
ends of the graph (upward facing)	ends of the graph (downward facing)
Domain: all reals	Domain: all reals
Range: all reals ≥ maximum	Range: all reals ≤ maximum
Example: $y = x^2$	Example: $y = -2x^6 + 3x^5 + 4x$

Degree: odd	Degree: odd
Leading Coefficient: positive	Leading Coefficient: negative
End Behavior: At graph left, $f(x) \rightarrow -\infty$. At	End Behavior: At graph left, $f(x) \rightarrow +\infty$. At
graph right, $f(x) \rightarrow +\infty$ (upward sloping)	graph right, $f(x) \rightarrow -\infty$ (downward sloping)
Domain: all reals	Domain: all reals
Range: all reals	Range: all reals
Example: $f(x) = x^3$	Example: $f(x) = -3x^5 - 2x$

Desmos Fluency:

+Be sure you know how to use a CHART or TABLE to find an equation from values of a graph (linear regression).

+Be sure you know how to use a SLIDER.

+You can only use a slider generally with two variable equations. If necessary, add a 0x term to allow you to use a slider with a single variable. Likewise you need x and y to add a slider. If a single variable equation, split it and set each equation side equal to y so you can add a slider.

+Beware of turning to Desmos when a faster way exists.

+Beware of using Desmos on open answer questions or questions with complex answer choices (including radicals, weird fractions, etc.)

+Always learn a 2nd way to do any problem you do in Desmos!