SAT MATH SECTION: CHEAT SHEET FORMULAS, RULES, AND DEFINITIONS

Note: important formulas included at beginning of every test not included below

ALGEBRA:

ZERO PRODUCT PROPERTY: If ab = 0, then a = 0, b = 0, or a = b = 0.

SYSTEMS OF EQUATIONS:

When you solve down a system of equations, one of three outcomes is possible as you run the algebra and create a final, simplified equation:

One solution	Zero solutions	Infinite solutions
If you get a single x or y	If you get a statement that is	If you get two values that
value, (i.e. x=5 or y=2) you	never true (i.e. 5=9 or 0=4),	always equal each other (i.e.
have one solution	you have no solutions.	3x=3x or 5=5), you have
		infinite solutions.

Comparing equations: You can alternatively put EVERY equation in slope intercept form that is part of your system of linear equations. Then look at each of the y=mx+b forms and compare the two slopes (i.e. the "m's") and y-intercepts (the "b's").

One solution	Zero solutions	Infinite solutions
Different slopes (intercepts	Same slopes (parallel lines),	Same slope, same intercept
don't matter)	different y-intercepts	i.e. identical equations

FOIL AND FACTORING:

- A monomial is a single product such as $4x, 7x^3$, or $8n^2$.
- A binomial has two elements added together such as 4x + 3 or $5n^3 + 3n$.
- A polynomial has multiple elements added together such as $5n^3 + 3n^2 + 7n + 2$ or $5n^3 + 3n^2 + 7n + 2$ or $5x^2 + 2x + 4$ $5x^2 + 2x + 4$.
- Difference of Squares: The product of the difference (a-b) and the sum (a+b) is equal to *a* squared minus *b* squared, $(a-b)(a+b) = a^2 b^2$
- Square of a Sum: $(a + b)^2 = a^2 + 2ab + b^2$
- Square of a Difference: $(a b)^2 = a^2 2ab + b^2$

SLOPE FORMULA: For points (x_1, y_1) and (x_2, y_2) , $m = \frac{y_2 - y_1}{x_2 - x_1}$.

SLOPE-INTERCEPT FORM: y = mx + b

Where m is the **slope** of the line, and b is the **y-intercept** of the line at point (0, b).

MIDPOINT FORMULA: The midpoint of two coordinate points (x_1, y_1) and (x_2, y_2) is:

 $\left(\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2}\right)$

$$\left(\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2}\right)$$

DISTANCE FORMULA: Given two points, (x_1, y_1) and (x_2, y_2) , the distance between them is: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

SPEED AND RATES DISTANCE FORMULA: d = rtWORK FORMULA: w = rtCOMBINED WORK FORMULA: $w = (r_1 + r_2)t$

QUADRATICS AND POLYNOMIALS: Important- know how to find the vertex of ANY parabola!

- VERTEX FORM OF A QUADRATIC: the vertex form of a parabola is: $f(x) = a(x-b)^2 + k$
 - The vertex of the parabola in this form is (h, k)
 - When a is positive, the parabola opens upwards, and the minimum is (h, k).
 - When a is negative, the parabola opens downwards, and the minimum is (h, k).
 - Alternate form for parabolas with horizontal axis (RARE, unlikely to appear) $x = a(y-k)^2 + h$, positive *a* opens right-ward, negative *a* opens leftward
- FACTORED FORM: The factored form of a polynomial usually takes the form: f(x) = a(x - n)(x - m)
 - When *a* is positive, the parabola opens upwards.
 - When *a* is negative, the parabola opens downwards.
 - The graph crosses the x-axis at each point when a factored piece equals zero (the zeros). For example, at x=n, x-n equals 0, so the graph crosses through the point (n, 0) on the x-axis.

In the case of a quadratic, which will typically have two roots (i.e. two factored pieces that include an x), the midpoint of 2 zeros is the x-value of the vertex. In the example above, the zeros are at x=n and x=m. So the x value of its vertex is the average of n and m.

- STANDARD FORM: the standard form of the parabola has the general form: $f(x) = ax^2 + bx + c$ $f(x) = ax^2 + bx + c$
 - $-\frac{b}{2a}$ is the x-value of the vertex. The y-value of the vertex can be found by

plugging in this value for x and solving for y (or f(x)). Memorize this!

- Assuming a vertically oriented parabola, the vertex is always either the maximum or the minimum of the graph. (remember max/min is always the yvalue!)
- When *a* is positive, the parabola opens upwards.

- When a is negative, the parabola opens downwards.
- The sum of the two roots is $-\frac{b}{a}$ (not necessary to know, but occasionally helpful)
- The product of the two roots is $\frac{c}{a}$ (not necessary to know, but occasionally helpful)
- QUADRATIC FORMULA: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ Memorize this. Also, we recommend you program it into your calculator. (See TI 84 programs for download in the online course)
- FINDING SOLUTIONS USING THE DISCRIMINANT: Given that $f(x) = ax^2 + bx + c$, the discriminant is defined as $b^2 4ac$ (the piece under the root in the quadratic equation):
 - When this value is positive, there are two real roots
 - o When this value is 0, there is one real root
 - When this value is negative, there are no real roots but two imaginary roots

RADICAL AND EXPONENT RULES:

EXPONENT RULES	RADICAL RULES
Zero Power Rule: $a^0 = 1$	Fractional exponent conversion: $\sqrt[6]{a^b} = a^{\frac{b}{c}}$
Negative exponent rule: $a^{-b} = \frac{1}{a^b}a$	Product of radicals: $\sqrt[6]{a}\sqrt[6]{b} = \sqrt[6]{ab}$
Power of a power: $(a^b)^c = a^{bc}$	
Product of powers: $(ab)^{c} = a^{b+c}$	
Power of a product: $(ab)^c = a^c b^c$	
Power of a quotient: $\frac{a^b}{c^b} = \left(\frac{a}{c}\right)^b$	
Quotient of powers: $\frac{a^b}{a^c} = a^{b-c}$	

THE DEFINITION OF A LOGARITHM: $\log_{c} a = b$ means that $c^{b} = a$

COMMON LOGARITHMS: $\log x = \log_{10} x$

NATURAL LOGARITHMS: $\ln x = \log_{e} x$

CHANGE OF BASE FORMULA: For all positive numbers a , b , and c, where $b \neq 1$ and $c \neq 1$:

 $\log_b a = \frac{\log_c a}{\log_c b}$

CIRCLE THEOREMS:

• Circle Equation: $(x-b)^2 + (y-k)^2 = r^2$ with center point at (h, k)

Angle to Arc Length Equations: Central angles are proportional to the arc length they intercept, so you can create a proportion that equates part over whole equal to part over whole:

central angle measure		arc length
total measure of angle in a circle	_	total circumference

DEGREES VERSION OF EQUATION:

• More specifically, this means if a circle has a central angle a, radius r, and arc length L:

$$\frac{a^{\circ}}{360^{\circ}} = \frac{L}{2\pi r}$$

RADIANS VERSION OF EQUATION:

• For any arc on a circle with a central angle (in radians) of θ , where r is the radius of the circle, the length L of the arc is given by:

 $\frac{\theta}{2\pi} = \frac{L}{2\pi r}$ which simplifies to a short handy equation that's a good idea to memorize: $L = \theta r$.

Angle to Sector Area Equations: Central angles are proportional to the area of the sector they include, so you can create a proportion that equates part over whole equal to part over whole:

central angle measure	_ sector area
total measure of angle in a circle	total circle area

DEGREES VERSION OF EQUATION:

• For any sector on a circle with a central angle (in degrees) of *a*, where *r* is the radius of the circle, and the area is *A*:

$$\frac{a^{\circ}}{360^{\circ}} = \left(\frac{A}{\pi r^2}\right)$$

RADIANS VERSION OF EQUATION:

 For any sector in a circle with a central angle (in radians) of θ, where r is the radius of the circle, and the area A of that circle:

$$\frac{\theta}{2\pi} = \frac{A}{\pi r^2}$$

This simplifies to a shorter equation, which may merit memorizing:

$$A = \frac{1}{2}\theta r^2$$

• Inscribed Angle Theorem: States that an angle (portrayed as *b* below) inscribed in a circle is equal to half of the central angle (portrayed as *a* below) that subtends the same arc. Both scenarios below show the central angle theorem:

• Trigonometry:

SOHCAHTOA: For any angle θ in a right triangle, $\sin \theta = \frac{opposite}{hypotenuse}$, $\cos \theta = \frac{adjacient}{hypotenuse}$ and $\tan \theta = \frac{opposite}{hypotenuse}$.

Passport to Advanced Math:

- Function Notation:
- $(f \circ g)(x)$ means f(g(x))
- (f * g)(x) and fg(x) mean f(x) * g(x)
- $\left(\frac{f}{g}\right)(x)$ means $\frac{f(x)}{g(x)}$

Problem Solving and Data Analysis:

- General Statistics:
- Average: Sum of terms divided by number of terms
- Median: The numerical middle value of a set of terms
- Mode: The most common term in a set of terms
- Graphs/Plots:
- Line of Best Fit: A line that best represents the data on a scatterplot. It can be used to estimate the value of points not on the plot itself.

GRAPH BEHAVIOR: Types of graphs:

- Horizontal Shift: For ALL functions, if you replace all instances of x in a function with "(x-b)" you'll find that the graph moves "h" units to the right.
- Vertical Shift: If you replace all instances of y in a function with "(y-k)" you'll find that the graph moves "k" units upward.

END BEHAVIOR:	END	BEHAV	IOR:
---------------	-----	-------	------

Degree: Even	Degree: Even
Leading Coefficient: positive	Leading Coefficient: negative
End Behavior: $f(x)$ approaches $+\infty$ at both	End Behavior: $f(x)$ approaches $-\infty$ at both
ends of the graph (upward facing)	ends of the graph (downward facing)
Domain: all reals	Domain: all reals
Range: all reals ≥ maximum	Range: all reals ≤ maximum
Example: $y = x^2$	Example: $y = -2x^6 + 3x^5 + 4x$

Degree: odd	Degree: odd
Leading Coefficient: positive	Leading Coefficient: negative
End Behavior: At graph left, $f(x) \rightarrow -\infty$. At	End Behavior: At graph left, $f(x) \rightarrow +\infty$. At
graph right, $f(x) \rightarrow +\infty$ (upward sloping)	graph right, $f(x) \rightarrow -\infty$ (downward sloping)
Domain: all reals	Domain: all reals
Range: all reals	Range: all reals
Example: $f(x) = x^3$	Example: $f(x) = -3x^5 - 2x$