SAT MATH SECTION: CHEAT SHEET FORMULAS, RULES, AND DEFINITIONS

Note: important formulas included at beginning of every test not included below

ALGEBRA:

ZERO PRODUCT PROPERTY: If ab = 0, then a = 0, b = 0, or a = b = 0.

SYSTEMS OF EQUATIONS:

When you solve down a system of equations, one of three outcomes is possible as you run the algebra and create a final, simplified equation:

One solution	Zero solutions	Infinite solutions		
If you get a single x or y	If you get a statement that is	If you get two values that		
value, (i.e. x=5 or y=2) you	never true (i.e. 5=9 or 0=4),	always equal each other (i.e.		
have one solution	you have no solutions.	3x=3x or 5=5), you have		
		infinite solutions.		
Comparing equations: You can alternatively put EVERY equation in slope intercept form that				
is part of your system of linear equations. Then look at each of the y=mx+b forms and				
compare the two slopes (i.e. the "m's") and y-intercepts (the "b's").				
One solution	Zero solutions	Infinite solutions		
Different slopes (intercepts	Same slopes (parallel lines),	Same slope, same intercept		

FOIL AND FACTORING:

don't matter)

- A monomial is a single product such as $4x,7x^3$, or $8n^2$.
- A **binomial** has two elements added together such as 4x + 3 or $5n^3 + 3n$.

different y-intercepts

- A **polynomial** has multiple elements added together such as $5n^3 + 3n^2 + 7n + 2$ or $5n^3 + 3n^2 + 7n + 2$ or $5x^2 + 2x + 4$ $5x^2 + 2x + 4$.
- Difference of Squares: The product of the difference (a-b) and the sum (a+b) is equal to a squared minus b squared, $(a-b)(a+b)=a^2-b^2$
- Square of a Sum: $(a + b)^2 = a^2 + 2ab + b^2$
- Square of a Difference: $(a b)^2 = a^2 2ab + b^2$

SLOPE FORMULA: For points (x_1, y_1) and (x_2, y_2) , $m = \frac{y_2 - y_1}{x_2 - x_1}$.

SLOPE-INTERCEPT FORM: y = mx + b

Where m is the **slope** of the line, and b is the **y-intercept** of the line at point (0, b).

MIDPOINT FORMULA: The midpoint of two coordinate points (x_1, y_1) and (x_2, y_2) is:

$$\left(\frac{(x_1+x_2)}{2},\frac{(y_1+y_2)}{2}\right)$$

i.e. identical equations

$$\left(\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2}\right)$$

DISTANCE FORMULA: Given two points, (x_1, y_1) and (x_2, y_2) , the distance between them is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

SPEED AND RATES DISTANCE FORMULA: d=rt

WORK FORMULA: w = rt

COMBINED WORK FORMULA: $w = (r_1 + r_2)t$

QUADRATICS AND POLYNOMIALS: Important- know how to find the vertex of ANY parabola!

- VERTEX FORM OF A QUADRATIC: the vertex form of a parabola is: $f(x) = a(x-b)^2 + k$
 - The vertex of the parabola in this form is (h, k)
 - \circ When a is positive, the parabola opens upwards, and the minimum is (h, k).
 - \circ When a is negative, the parabola opens downwards, and the minimum is (h, k).
 - O Alternate form for parabolas with horizontal axis (RARE, unlikely to appear) $x = a(y-k)^2 + h$, positive a opens right-ward, negative a opens leftward
- FACTORED FORM: The factored form of a polynomial usually takes the form:

$$f(x) = a(x - n)(x - m)$$

- \circ When a is positive, the parabola opens upwards.
- \circ When a is negative, the parabola opens downwards.
- The graph crosses the x-axis at each point when a factored piece equals zero (the zeros). For example, at x=n, x-n equals 0, so the graph crosses through the point (n, 0) on the x-axis.

In the case of a quadratic, which will typically have two roots (i.e. two factored pieces that include an x), the midpoint of 2 zeros is the x-value of the vertex. In the example above, the zeros are at x=n and x=m. So the x value of its vertex is the average of n and m.

- STANDARD FORM: the standard form of the parabola has the general form: $f(x) = ax^2 + bx + c$ $f(x) = ax^2 + bx + c$
 - \circ $-\frac{b}{2a}$ is the x-value of the vertex. The y-value of the vertex can be found by plugging in this value for x and solving for y (or f(x)). Memorize this!
 - Assuming a vertically oriented parabola, the vertex is always either the maximum or the minimum of the graph. (remember max/min is always the yvalue!)
 - \circ When a is positive, the parabola opens upwards.

- \circ When a is negative, the parabola opens downwards.
- \circ The sum of the two roots is $-\frac{b}{a}$ (not necessary to know, but occasionally helpful)
- The product of the two roots is $\frac{c}{a}$ (not necessary to know, but occasionally helpful)
- QUADRATIC FORMULA: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ Memorize this. Also, we recommend you program it into your calculator. (See TI 84 programs for download in the online course)
- FINDING SOLUTIONS USING THE DISCRIMINANT: Given that $f(x) = ax^2 + bx + c$, the discriminant is defined as $b^2 4ac$ (the piece under the root in the quadratic equation):
 - When this value is positive, there are two real roots
 - When this value is 0, there is one real root
 - O When this value is negative, there are no real roots but two imaginary roots

RADICAL AND EXPONENT RULES:

EXPONENT RULES	RADICAL RULES
Zero Power Rule: $a^0 = 1$	Fractional exponent conversion: $\sqrt[c]{a^b = a^c}$
Negative exponent rule: $a^{-b} = \frac{1}{a^b}a$	Product of radicals: $\sqrt[6]{a}\sqrt[6]{b} = \sqrt[6]{ab}$
Power of a power: $(a^b)^c = a^{bc}$	
Product of powers: $(ab)^c = a^{b+c}$	
Power of a product: $(ab)^c = a^c b^c$	
Power of a quotient: $\frac{a^b}{c^b} = \left(\frac{a}{c}\right)^b$	
Quotient of powers: $\frac{a^b}{a^c} = a^{b-c}$	

THE DEFINITION OF A LOGARITHM: $\log_{c} a = b$ means that $c^{b} = a$

COMMON LOGARITHMS: $\log x = \log_{10} x$ NATURAL LOGARITHMS: $\ln x = \log_e x$

CHANGE OF BASE FORMULA: For all positive numbers a , b , and c, where $b \neq 1$ and $c \neq 1$:

$$\log_b a = \frac{\log_c a}{\log_c b}$$

CIRCLE THEOREMS:

• Circle Equation: $(x-b)^2 + (y-k)^2 = r^2$ with center point at (h,k)

Angle to Arc Length Equations: Central angles are proportional to the arc length they intercept, so you can create a proportion that equates part over whole equal to part over whole:

$$\frac{\textit{central angle measure}}{\textit{total measure of angle in a circle}} = \frac{\textit{arc length}}{\textit{total circumference}}$$

DEGREES VERSION OF EQUATION:

• More specifically, this means if a circle has a central angle a, radius r, and arc length L:

$$\frac{a^{\circ}}{360^{\circ}} = \frac{L}{2\pi r}$$

RADIANS VERSION OF EQUATION:

- For any arc on a circle with a central angle (in radians) of θ , where r is the radius of the circle, the length L of the arc is given by:
- $\frac{\theta}{2\pi} = \frac{L}{2\pi r}$ which simplifies to a short handy equation that's a good idea to memorize: $L = \theta r$.

Angle to Sector Area Equations: Central angles are proportional to the area of the sector they include, so you can create a proportion that equates part over whole equal to part over whole:

$$\frac{central \ angle \ measure}{total \ measure \ of \ angle \ in \ a \ circle} = \frac{sector \ area}{total \ circle \ area}$$

DEGREES VERSION OF EQUATION:

• For any sector on a circle with a central angle (in degrees) of a, where r is the radius of the circle, and the area is A:

$$\frac{a^{\circ}}{360^{\circ}} = \left(\frac{A}{\pi r^2}\right).$$

RADIANS VERSION OF EQUATION:

• For any sector in a circle with a central angle (in radians) of θ , where r is the radius of the circle, and the area A of that circle:

$$\frac{\theta}{2\pi} = \frac{A}{\pi r^2}$$

This simplifies to a shorter equation, which may merit memorizing:

$$A = \frac{1}{2}\theta r^2$$

• Inscribed Angle Theorem: States that an angle (portrayed as b below) inscribed in a circle is equal to half of the central angle (portrayed as a below) that subtends the same arc. Both scenarios below show the central angle theorem:

• Trigonometry:

SOHCAHTOA: For any angle
$$\theta$$
 in a right triangle, $\sin\theta = \frac{opposite}{hypotenuse}$, $\cos\theta = \frac{adjacient}{hypotenuse}$ and $\tan\theta = \frac{opposite}{hypotenuse}$.

Passport to Advanced Math:

- Function Notation:
- $(f \circ g)(x)$ means f(g(x))
- (f * g)(x) and fg(x) mean f(x) * g(x)
- $\left(\frac{f}{g}\right)(x)$ means $\frac{f(x)}{g(x)}$

Problem Solving and Data Analysis:

- General Statistics:
- Average: Sum of terms divided by number of terms
- Median: The numerical middle value of a set of terms
- Mode: The most common term in a set of terms
- Graphs/Plots:
- Line of Best Fit: A line that best represents the data on a scatterplot. It can be used to estimate the value of points not on the plot itself.

GRAPH BEHAVIOR:

Types of graphs:

Graph of an exponential function:

Standard Form:
$$f(x) = a^x$$

Example:
$$y = 2^x$$

Standard Form:
$$a\sqrt{x}$$

Example (Parent Graph):
$$y = \sqrt{x}$$

Graph of a cubic function:

Vertex Form:
$$y = a(x-h)^3 + k$$

Example (Parent Graph): $y = x^3$

Example (Parent Graph):
$$V = X^3$$

Vertex Form:
$$f(x) = a(x-h)^2 + k$$

Example (Parent Graph): $y = x^2$

Graph of a linear equation:

Slope-Intercept Form:
$$y = mx + b$$

Example (Parent form):
$$y = x$$

Graph of a logarithmic function:

Standard Form:
$$y = \log_a x$$

Example:
$$y = \log_{10} x$$

Graph of an absolute value function:

Vertex Form:
$$y = a x - h + k$$

Example (Parent Graph):
$$y = X$$

- Horizontal Shift: For ALL functions, if you replace all instances of x in a function with "(x-b)" you'll find that the graph moves "h" units to the right.
- Vertical Shift: If you replace all instances of y in a function with "(y-k)" you'll find that the graph moves "k" units upward.

END BEHAVIOR:

Degree: Even	Degree: Even
Leading Coefficient: positive	Leading Coefficient: negative
End Behavior: $f(x)$ approaches $+\infty$ at both	End Behavior: $f(x)$ approaches $-\infty$ at both
ends of the graph (upward facing)	ends of the graph (downward facing)
Domain: all reals	Domain: all reals
Range: all reals ≥ maximum	Range: all reals ≤ maximum
Example: $y = x^2$	Example: $y = -2x^6 + 3x^5 + 4x$

Degree: odd	Degree: odd
Leading Coefficient: positive	Leading Coefficient: negative
End Behavior: At graph left, $f(x) \to -\infty$. At graph right, $f(x) \to +\infty$ (upward sloping)	End Behavior: At graph left, $f(x) \to +\infty$. At graph right, $f(x) \to -\infty$ (downward sloping)
Domain: all reals	Domain: all reals
Range: all reals	Range: all reals
Example: $f(x) = x^3$	Example: $f(x) = -3x^5 - 2x$