ACT MATH SECTION: FORMULAS, RULES, AND DEFINITIONS

ALGEBRA:

ZERO PRODUCT PROPERTY: If ab = 0, then a = 0, b = 0, or a = b = 0.

SYSTEMS OF EQUATIONS:

One solution	Zero solutions	Infinite solutions		
If you get a single x or y	If you get a statement that is	If you get two values that		
value, you have one solution	never true, you have no	always equal each other, you		
	solutions.	have infinite solutions.		
Comparing slopes of equations:				
Different slopes (intercepts	Same slopes (parallel lines),	Same slope, same intercept		
don't matter)	different y-intercepts			

FOIL AND FACTORING:

- A monomial is a single product such as $4x, 7x^3$, or $8n^2$.
- A binomial has two elements added together such as 4x + 3 or $5n^3 + 3n$.
- A polynomial has multiple elements added together such as $5n^3 + 3n^2 + 7n + 2$ or $5n^3 + 3n^2 + 7n + 2$ or $5x^3 + 3n^2 + 7n + 2$ or $5x^2 + 2x + 4$.
- Difference of Squares: The product of the difference (a-b) and the sum a+b is equal to a squared minus b squared, $(a-b)(a+b) = a^2 b^2$ $(a-b)(a+b) = a^2 b^2$
- Square of a Sum: $(a + b)^2 = a^2 + 2ab b^2$
- Square of a Difference: $(a b)^2 = a^2 2ab b^2 (a b)^2 = a^2 + 2ab b^2$

SLOPE FORMULA: For points (x_1, y_1) and (x_2, y_2) , $m = \frac{y_2 - y_1}{x_2 - x_1}$.

SLOPE-INTERCEPT FORM: y = mx + bWhere *m* is the **slope** of the line, and *b* is the **y-intercept** of the line at point (0, b).

MIDPOINT FORMULA: The midpoint of two coordinate points (x_1, y_1) and (x_2, y_2) is:

$$(x_1+x_2)$$
, (y_1+y_2) , 2)

DISTANCE FORMULA: Given two points, (x_1, y_1) and (x_2, y_2) , the distance between them is: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

 $\left(\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2}\right)$

SPEED AND RATES DISTANCE FORMULA: d = rt

WORK FORMULA: w = rtCOMBINED WORK FORMULA: $w = (r_1 + r_2)t w = (r_1 + r_2)t$

PARABOLA FORMULA: $y = a(x - h)^2 + k$ OR $x = a(y - k)^2 + h_y = a(x - h)^2 + k$

 $x = a(y-k)^2 + b$

QUADRATICS AND POLYNOMIALS:

- VERTEX FORM: the vertex form of a parabola is: $f(x) = a(x-b)^2 + k$
 - The vertex of the parabola in this form is (h, k)
 - When a is positive, the parabola opens upwards, and the minimum is (h, k).
 - When a is negative, the parabola opens downwards, and the minimum is (h, k).
- FACTORED FORM: The factored form of a polynomial usually takes the form:

f(x) = a(x - n)(x - m) f(x) = a(x - n)(x - m)

- When a is positive, the parabola opens upwards.
- \circ When *a* is negative, the parabola opens downwards.

The midpoint of 2 zeros is the x-value of the vertex, with zeros at values of x such that (ax - m) = 0

(ax-n)=0

- STANDARD FORM: the standard form of the parabola has the general form: $f(x) = ax^2 + bx + c f(x) = ax^2 + bx + c$
 - $-\frac{b}{2a}$ is the x-value of the vertex. The y-value of the vertex can be found by

plugging in this value for x and solving for y (or f(x)).

- The vertex is always either the maximum or the minimum of the graph.
- \circ When *a* is positive, the parabola opens upwards.
- \circ When *a* is negative, the parabola opens downwards.
- The sum of the two roots is $-\frac{b}{a}$ (not necessary to know)
- The product of the two roots is $\frac{c}{a}$ (not necessary to know)
- QUADRATIC FORMULA: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

FINDING SOLUTIONS USING THE DISCRIMINANT: Given that $f(x) = ax^2 + bx + c$, the discriminant is defined as $b^2 - 4ac b^2 - 4ac$ (the argument of the root in the quadratic equation):

- When this value is positive, there are two real roots
- When this value is 0, there is one real root
- When this value is negative, there are no real roots (but it does have two imaginary roots)

RADICAL AND EXPONENT RULES:

EXPONENT RULES	RADICAL RULES
Zero Power Rule: $a^0 = 1$	Fractional exponent conversion: $\sqrt[c]{a^b} = a^{\frac{b}{c}}$
Negative exponent rule: $a^{-b} = \frac{1}{a^b}a$	Product of radicals: $\sqrt[6]{a}\sqrt[6]{b} = \sqrt[6]{ab}$
Power of a power: $(a^b)^c = a^{bc}$	
Product of powers: $(ab)^{c} = a^{b+c}$	
Power of a product: $(ab)^c = a^c b^c$	
Power of a quotient: $\frac{a^b}{c^b} = \left(\frac{a}{c}\right)^b$	
Quotient of powers: $\frac{a^b}{a^c} = a^{b-c}$	

THE DEFINITION OF A LOGARITHM: $\log_{c} a = b$ means that $c^{b} = a$

COMMON LOGARITHMS: $\log x = \log_{10} x$

NATURAL LOGARITHMS: $\ln x = \log_e x$

CHANGE OF BASE FORMULA: For all positive numbers a , b , and c, where $b \neq 1$ and $c \neq 1$:

$$\log_b a = \frac{\log_c a}{\log_c b}$$

PROPERTIES OF LOGARITHMS:

- Power Property: $a \log x = \log_b x^a$
- **Product Property:** $\log_a x + \log_a y = \log_a xy$
- Quotient Property: $\log_a x \log_a y = \log_a \frac{x}{y}$

DEFINITION OF LOGARITHMS:

- $n^{\log_n} = a$
- $\log_x x^n = n \log_x x^n = n \log_x x^n$
- Logarithm of the base: $\log_x x = 1 \log_x x = 1$

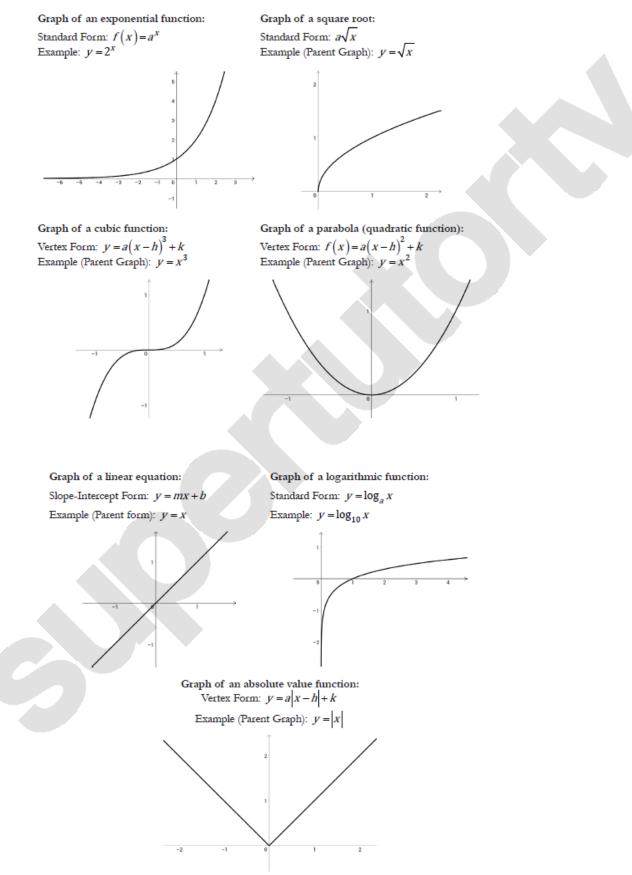
CONICS:

- Circle Equation: $(x-b)^2 + (y-k)^2 = r^2$ with center point at (h, k)
- Ellipse Equation: $\frac{(x-b)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ with center point at (h, k) and the distance

from that center to the end points of the major and minor axes denoted by a and b .

- Equation of a Hyperbola: $\frac{(x-b)^2}{a^2} \frac{(y-k)^2}{b^2} = 1 \text{ or } \frac{(y-k)^2}{b^2} \frac{(x-b)^2}{a^2} = 1$
- Conic Equation Types: A conic section of the form, $Ax^2 + By^2 + Cx + Dy + E = 0$ in which A and B are both not zero is:
 - \circ A circle if A = B.
 - \circ A parabola if AB = 0.
 - An ellipse if A \neq B and AB >0.
 - A hyperbola if AB <0.

GRAPH BEHAVIOR: Types of graphs:



For individual subscriber use only: unauthorized reproducing or sharing of this content is illegal. Subscribe at supertutortv.com. Copyright © 2019 by Supertutor Media, Inc. Report misuse to info@supertutortv.com.

- Horizontal Shift: For ALL functions, if you replace all instances of x in a function with "(x-b)" you'll find that the graph moves "h" units to the right.
- Vertical Shift: If you replace all instances of y in a function with "(y-k)" you'll find that the graph moves "k" units upward.

Degree: Even	Degree: Even
Leading Coefficient: positive	Leading Coefficient: negative
End Behavior: $f(x)$ approaches $+\infty$ at both ends	End Behavior: $f(x)$ approaches $-\infty$ at both ends
of the graph (upward facing)	of the graph (downward facing)
Domain: all reals	Domain: all reals
Range: all reals ≥ maximum	Range: all reals ≤ maximum
Example: $y = x^2$	Example: $y = -2x^6 + 3x^5 + 4x$
Example: $y = x$	Example: $y = -2x^2 + 5x^2 + 4x^2$

Degree: odd	Degree: odd
Leading Coefficient: positive	Leading Coefficient: negative
End Behavior: At graph left, $f(x) \rightarrow -\infty$. At graph right, $f(x) \rightarrow +\infty$ (upward sloping)	End Behavior: At graph left, $f(x) \rightarrow +\infty$. At graph right, $f(x) \rightarrow -\infty$ (downward sloping)
Domain: all reals	Domain: all reals
Range: all reals	Range: all reals
Example: $f(x) = x^3$	Example: $f(x) = -3x^5 - 2x$

TRANSLATIONS AND REFLECTIONS:

- Reflectional symmetry: the property a figure has if half of the figure is congruent to the other half over an axis.
- Rotational symmetry: also known as radial symmetry—the property a figure has if it is congruent to itself after some rotation less than 360°.